Post-Remedial Excavation Confirmation Sample Report Parcel A, Report No. 5

Boeing Realty Corporation C-6 Facility Los Angeles, California

August 1997

POST-REMEDIAL EXCAVATION CONFIRMATION SAMPLE REPORT PARCEL A REPORT NO. 5

BOEING REALTY CORPORATION C-6 FACILITY LOS ANGELES, CALIFORNIA

August 1997

Prepared For:

BOEING REALTY CORPORATION 4060 Lakewood Boulevard, 6th Floor Long Beach, California 90808

Prepared By:

MONTGOMERY WATSON 250 North Madison Avenue Pasadena, California 91101

TABLE OF CONTENTS

Section			Page No.
1.0	INT	RODUCTION	1-1
	1.1	Overview	1-1
	1.2	Purpose and Objective	1-1
2.0	OPE	EN AREA NO. 1 REMEDIAL EXCAVATIONS	2-1
	2.1	Soil Sampling	2-2
		2.1.1 Hot Spot Sampling	2-2
		2.1.2 Stockpile Sampling	2-3
		2.1.3 Confirmation Sampling	2-3
	2.2	In Situ Soil Quality	2-4
		2.2.1 OA1-RE-4 Remedial Excavation	2-4
		2.2.2 OA1-RE-5 Remedial Excavation	2-5
		2.2.3 OA1-RE-6 Remedial Excavation	2-5
3.0	DAT	ΓA SUMMARY AND CONCLUSIONS	3-1
	3.1	Soil Screening Methodology	3-1
	3.2	Remedial Excavation Evaluations	3-3
		3.2.1 OA1-RE-4 Remedial Excavation	3-3
		3.2.2 OA1-RE-5 Remedial Excavation	3-4
		3.2.3 OA1-RE-6 Remedial Excavation	3-4
4.0	BIB	LIOGRAPHY	4-1

Appendices

A - Laboratory Analytical Repor	Report	cal	Analytic	oratory	abo	_ 1	A
---------------------------------	--------	-----	----------	---------	-----	-----	---

- A-1 OA1-RE-4 Remedial Excavation
- A-2 OA1-RE-5 Remedial Excavation
- A-3 OA1-RE-6 Remedial Excavation

LIST OF FIGURES

Figure No.	
1	C-6 Facility Map
2	Site Map
3	Remedial Excavations OA1-RE-4, OA1-RE-5, and OA1-RE-6 Locations
4	Remedial Excavation OA1-RE-4 Confirmation Sample Locations
5	Remedial Excavation OA1-RE-5 Confirmation Sample Locations
6	Remedial Excavation OA1-RE-6 Confirmation Sample Locations
7	Soil Screening Evaluation Process

LIST OF TABLES

l able INO.	
1	Summary of Soil Sample Analytical Methods
2	Analytical Data Summary, Remedial Excavation OA1-RE-4
	Confirmation Samples
3	Analytical Data Summary, Remedial Excavation OA1-RE-5
	Confirmation Samples
4	Analytical Data Summary, Remedial Excavation OA1-RE-6
	Confirmation Samples
5	Health-Based Remediation Goals

Appendices for this document are on file at Boeing Realty Corporation, Long Beach, California.

12/10

SECTION 1.0

INTRODUCTION

In October 1996, Montgomery Watson (Montgomery) was retained by McDonnell Douglas Realty Company (MDRC), now the Boeing Realty Corporation, to assist with the redevelopment of Parcel A (the Site) of their C-6 facility located in Los Angeles, California. Figure 1 presents the C-6 facility. Figure 2 delineates the Site. The Site was formerly used to manufacture and store aircraft parts.

1.1 OVERVIEW

14619

10000

Yested

The Site consists of the northernmost quarter of the C-6 facility, encompassing approximately 50 acres. Demolition of the following buildings at the Site has occurred: Building 29, 33, 34, 36, 37, 57, 58, 61, and 67. Demolition of the following buildings is pending: Building 40, 41, 43/44, 45, and 66-A.

Information gathered during the data compilation and evaluation phase of this project indicated the presence of petroleum products and other chemicals of concern in the surface and subsurface.

A soil sampling and remedial excavation effort is being conducted in conjunction with the removal of foundations, slabs, and below-ground structures. The purpose of this effort is to assess soil quality and remove soil affected with petroleum hydrocarbons and other chemicals of concern in preparation for redevelopment of the Site. Soil which is determined to be affected with petroleum hydrocarbons and other chemicals is excavated and stockpiled at the Site. Confirmation samples are collected along the walls and floor of each remedial excavation to confirm that the surface soil (upper 12 feet) meets soil screening criteria.

Confirmation sampling activities discussed in this report have been conducted at remedial excavations in the open area located east of Buildings 37. For convenience, this area is referred to as "Open Area No. 1" in this report.

1.2 PURPOSE AND OBJECTIVE

This document presents the results of confirmation sampling conducted in excavation areas within Open Area No. 1. Specifically, this document is the fifth in a series of confirmation sample reports which follows the facility-wide strategy for assessing and screening the analytical data to confirm that the surface soil (upper 12 feet) areas, which were contaminated with petroleum hydrocarbons and other chemicals of concern, meet soil screening criteria.

The final surface soil residual chemical concentrations in the excavated area must meet soil screening criteria established for the Site and the C-6 facility as presented in Section 3.1 of this report. Along with its companion document, *Soil Stockpile Report*, *Parcel A, Report No.* 5 (Montgomery Watson, 1997(j)), this report documents that the Site excavation efforts meet these criteria.

(TM)

SECTION 2.0

OPEN AREA NO. 1 REMEDIAL EXCAVATIONS

Open Area No. 1 is located along the eastern portion of the Site, east of Building 37 and Building 41 extending to the Normandie Avenue property boundary. Open Area No. 1 is so designated because of its absence of structures, except for the Building 43/44 water tanks in the northeast corner. Open Area No. 1 formerly included the Gravel Yard, which was used for storage of miscellaneous materials and parts from the manufacturing operations of the facility. The facility storm drain outfall to the storm sewer is located near the northeast corner of the area. Historically, a railroad spur crossed Open Area No. 1 trending from south to north.

Building 41 was formerly used as a boiler house. The water tanks located at Building 43/44 in the northeast corner of Open Area No. 1 were formerly used to store diesel fuel oil which was pumped into Building 41 through buried product pipelines. These tanks were converted from diesel storage to water tanks (part of the C-6 facility's fire suppression system) approximately 25 years ago. The abandoned product lines leading from the tanks to Building 41 were discovered during the demolition process, and remedial excavations discussed in this report were conducted to remove primarily hydrocarbon-affected soil associated with releases from these product lines. Remedial excavations discussed in this report were conducted east of Building 37 within Open Area No. 1.

100

5600

The location of each remedial excavation discussed in this report is presented in Figure 3. The 20-foot by 20-foot grid used to reference Building 37 remedial excavations (Montgomery Watson, 1997(f-h)) was extended into Open Area No. 1 as presented in Figure 3 for the same purpose. Remedial excavations were recorded using the following nomenclature:

Open Area No. (OA#) - Remedial Excavation (RE) - Chronological Number (#) e.g., OA1-RE-4

Pertinent information related to the remedial excavations and the associated stockpiled soil discussed in this report is presented below.

Excavation/Stockpile(s)	Approximate Volume	Date of Excavation	Stockpile Location(s)
OA1-RE-4 / A — J	2,500 cu yds total	21 Jul 97 — 23 Jul 97	Within and west of Building 37 footprint
OA1-RE-5 / A — J	2,500 cu yds total	23 Jul 97 — 25 Jul 97	West of Building 37 footprint and within and north of Building 34 footprint
OA1-RE-6 / A — J	2,500 cu yds total	25 Jul 97 — 29 Jul 97	West of Building 37 footprint, within Building 34 footprint, and west of Building 34 footprint

2.1 SOIL SAMPLING

Hot spot sampling and confirmation sampling have been employed at Open Area No. 1. Detailed procedures for these activities are outlined in the Sampling and Analysis Plan for Demolition Activities at the Douglas Aircraft Company C-6 Facility prepared by Integrated Environmental Services, Inc. (IESI, 1997(a)) and previously submitted to the Regional Water Quality Control Board (RWQCB). In addition, stockpile sampling was performed on the excavated material. These procedures can be summarized as follows:

2.1.1 Hot Spot Sampling

Hot spot sampling was conducted at predetermined locations where former items of concern were located (e.g., product lines), and at other locations where demolition activities revealed soil which may have been affected by petroleum hydrocarbons or other chemicals of concern.

Hot spot samples were collected by first exposing "fresh" soil beneath the surface using a stainless steel utensil or similar device. A photoionization detector (PID) was used to measure headspace organic vapor concentrations in the freshly exposed soil at each location. Soil samples were collected for analysis where at least one of the following conditions existed: 1) the headspace VOC reading exceeded 5 ppm, (2) areas where staining of the soil was visible, or (3) areas where odors were noticeable.

Soil samples were collected for analysis in pre-cleaned, stainless steel sleeves by driving the sleeve into the soil with a rubber mallet or drive sampler. The ends of the sleeves were then covered with Teflon film and secured with plastic end caps. A unique sample identification using the following nomenclature was written in indelible ink on a sample label and attached to the sleeve.

Product Line (PL) - Grab Sample (GS) - Chronological Number (#) - Sample Depth (feet) e.g., PL-GS-4-2.5'

Sample sleeves were placed in a cooler with blue ice and transported under chain-of-custody to a State-certified laboratory for analysis. Hot spot samples have been analyzed according to the analytical schedule presented in Table 1.

2.1.2 Stockpile Sampling

Excavated soil was placed in stockpiles each consisting of approximately 250 cubic yards of soil. Generally, stockpile samples were collected at a frequency of approximately one sample per stockpile. Stockpile samples were collected from the most noticeably affected soil within the stockpile. Samples were collected by using a shovel to cut vertically into the side of a stockpile at each sample location to expose "fresh" soil; samples were then collected from the exposed vertical wall and headspace VOC concentrations were measured using the PID.

In a letter from Integrated Environmental Services, Inc. to the RWQCB dated August 6, 1997, the RWQCB concurred with a revised analytical sampling program as follows: stockpile soil samples were collected for analysis when PID readings were equal to or greater than 50 ppm at any stockpile; however, at least one sample per four consecutive stockpiles (1000 cubic yards) was collected if PID readings in each of the four consecutive stockpiles was less than 50 ppm.

Soil samples were collected for analysis in pre-cleaned, stainless steel sleeves by driving the sleeve into the soil with a rubber mallet or drive sampler. The ends of the sleeves were then covered with Teflon film and secured with plastic end caps. A unique sample identification using the following nomenclature was written in indelible ink on a sample label and attached to the sleeve.

Open Area No. (OA#) - Remedial Excavation No.(RE#) - Stockpile Chronological Number (SP#)

e.g., OA1-RE4-SP3

Sample sleeves were placed in a cooler with blue ice and transported under chain-of-custody to a State-certified laboratory for analysis.

Stockpile samples have been analyzed according to the analytical schedule presented in Table 1.

2.1.3 Confirmation Sampling

Confirmation samples were collected along the walls and floor of each remedial excavation to confirm that the surface soil (upper 12 feet) meets the soil screening criteria. Confirmation sampling was conducted at a frequency of at least one sample location each 40 feet along the walls and floor of each excavation.

Soil removal continued at a particular location until the following conditions were met: 1) the headspace VOC reading in freshly exposed soil was less than or equal to 5 ppm, and soil staining was not visible, and odors were not noticeable, or 2) the maximum excavation depth of 12 feet had been reached. A confirmation sample was collected when these conditions were met. Iterations of additional soil excavation were conducted as required until confirmation sample analytical data indicated that *in situ* soil quality met the soil screening criteria established in Section 3.1 of this report.

Confirmation soil samples were collected by first exposing "fresh" soil beneath the surface of a wall and floor of an excavation using a stainless steel utensil or similar device. Soil samples were collected for analysis in pre-cleaned, stainless steel sleeves by driving the sleeve into the soil with a rubber mallet or drive sampler. The ends of the sleeves were then covered with Teflon film and secured with plastic end caps. A unique sample identification using the following nomenclature was written in indelible ink on a sample label and attached to the sleeve.

Open Area No. (OA#) - Grab Sample (GS) - Chronological Number (#) - Sample Depth (feet)

e.g., OA1-GS-42-3'

Sample sleeves were placed in a cooler with blue ice and transported under chain-of-custody to a State-certified laboratory for analysis. Confirmation samples have been analyzed according to the analytical schedule presented in Table 1; however, some confirmation sample analyses were limited to target-specific chemicals once such analytes were identified either through previous sampling activities or historical site knowledge.

2.2 IN SITU SOIL QUALITY

Soil removal at Open Area No. 1 began on July 14, 1997 due to PID readings, visual observations, and noticeable odors in soil in the vicinity of the product lines.

2.2.1 OA1-RE-4 Remedial Excavation

Soil removal at remedial excavation OA1-RE-4 began on July 21, 1997 and was completed on July 23, 1997.

Approximately 2,500 cubic yards of stockpiled soil associated with this additional excavation was removed with an excavator, transported and stockpiled within and west of the Building 37 footprint (Stockpiles A through J).

Sixteen confirmation samples were collected at locations presented in Figure 4. Analytical data are summarized in Table 2. A complete set of analytical data are presented in Appendix A-1.

2.2.2 OA1-RE-5 Remedial Excavation

Soil removal at remedial excavation OA1-RE-5 began on July 23, 1997 and was completed on July 25, 1997.

Approximately 2,500 cubic yards of soil associated with this excavation was removed with an excavator, transported and stockpiled west of the Building 37 footprint, and within and north of the Building 34 footprint (Stockpiles A through J).

Six confirmation samples were collected at locations presented in Figure 5. The analytical data for these samples are summarized in Table 3. A complete set of laboratory analytical reports is presented in Appendix A-2.

2.2.3 OA1-RE-6 Remedial Excavation

Soil removal at remedial excavation OA1-RE-6 began on July 25, 1997 and was completed on July 29, 1997.

Approximately 2,500 cubic yards of stockpiled soil associated with this additional excavation was removed with an excavator, transported and stockpiled west of the Building 37 footprint, within the Building 34 footprint, and west of the Building 34 footprint (Stockpiles A through J).

Five confirmation samples were collected at locations presented in Figure 6. The analytical data for these samples are summarized in Table 4. A complete set of laboratory analytical reports is presented in Appendix A-3.

SECTION 3.0

DATA SUMMARY AND CONCLUSIONS

This section summarizes the soil screening criteria and confirmation sampling data from each remedial excavation discussed in this report and concludes whether all affected soil has been removed, or if additional excavation of affected soil is warranted.

3.1 SOIL SCREENING METHODOLOGY

The soil screening criteria have been developed to satisfy two primary objectives: (1) residual concentrations in soil must be below levels projected to impact underlying drinking water sources, and (2) residual concentrations must be below levels projected to potentially impact human health under future construction and commercial/industrial activities at the Site.

In accordance with these objectives, individual screening criteria were developed for both drinking water and human health protection. The development of each of these screening criteria is discussed below followed by a summary of how these values will be implemented in the evaluation of whether soil which remains at each remedial excavation meets the soil screening criteria.

Drinking Water

The generalized hydrostratigraphic succession at the Site is as follows (Kennedy/Jenks, 1996(b); Dames & Moore, 1993; Department of Water Resources, 1961):

SURFACE

Bellflower Aquitard Gage Aquifer El Segundo Aquitard Lynwood Aquifer

Depth to groundwater at the Site is approximately 65 feet. Hydrostratigraphic information from voluminous data collected at the neighboring Del Amo and Montrose Chemical Superfund Sites can be correlated with subsurface information collected at the Site. Hydrostratigraphic correlations suggest that the shallowest groundwater at the Site occurs in the Bellflower Aquitard, which is not recognized as a drinking water source in the region (Dames & Moore, 1993).

Although the depth to the top of the Gage Aquifer should vary from approximately 120 to 150 feet (from west to east) across the Site, the Gage Aquifer is not utilized as a source of drinking water in the region (Dames & Moore, 1993). Consequently, the shallowest drinking water resource in the region would therefore be the Lynwood Aquifer, projected to occur at the depths of approximately 210 to 240 feet (from west to east) across the Site.

Based on the depth to the first drinking water source, the following permissible concentrations to 12 feet below ground surface have been approved by the RWQCB:

Analytes	Permissible Level
TRPH	
C4 - C12	2,000 mg/kg
C13 - C22	10,000 mg/kg
C22+	50,000 mg/kg
Metals	TTLC and STLC

Notes:

TTLC: Total Threshold Limit Concentration per CCR Title 22. STLC: Soluble Threshold Limit Concentration per CCR Title 22.

A Waste Extraction Test (WET) is performed on samples with total metal concentration(s) greater than 10 times the STLC but less than the TTLC, per CCR Title 22.

Human Health

Site-specific health-based remediation goals (HBRGs) were developed by Integrated Environmental Services, Inc. using standard United States Environmental Protection Agency (USEPA) and California Environmental Protection Agency (Cal/EPA) methodologies. HBRGs were derived assuming future commercial industrial land use with an interim construction phase. Each HBRG will be used as a predictor of the risk posed by individual VOC, SVOC, PCB, and metal contaminants in soil. The additive effects of multiple contaminants have been accounted for by setting conservative risk levels at 1x10⁻⁶ for carcinogens and 0.2 for toxicants. The final cumulative risks for all residual contaminants at the Site will be addressed in the post-remedial risk assessment. Table 5 summarizes the HBRGs to be used at the Site. A more detailed discussion of the methodologies used to derive these values has been presented in the *Health-Based Remediation Goals for Surface Soils* document (IESI, 1997(b)).

Evaluation Process

All confirmation soil data at the Site will undergo the soil screening evaluation process depicted in Figure 7. This evaluation process incorporates both drinking water and human health based criteria. Additional soil excavation and/or treatment will be required at locations where confirmation sample data fail any portion of this test.

3.2 REMEDIAL EXCAVATION EVALUATIONS

Chemicals of concern at the Site can be summarized as follows:

- Petroleum hydrocarbons
- VOCs
- SVOCs
- PCBs
- Metals

The sampling and analysis program for remedial excavations discussed in this report was conservatively focused on these chemicals of concern by implementing the following analytical schedule:

- All samples were analyzed for TRPH and metals.
- All samples which contained TRPH in concentration greater than 10,000 mg/kg were subsequently analyzed for carbon chain length.
- All stockpile samples were additionally analyzed for VOCs and SVOCs.
- Stockpile samples were additionally analyzed for PCBs at a frequency of one sample per remedial excavation.
- Hot spot samples were additionally analyzed for VOCs, SVOCs, hydrocarbon fuel characterization, and PCBs.

Additionally, the post-remedial excavation confirmation sampling analytical program (see Table 1) was designed to ensure that residual soils (upper 12 feet) meet the soil screening levels.

3.2.1 OA1-RE-4 Remedial Excavation

Confirmation sample data are presented in Table 2 and can be summarized as follows:

<u>Petroleum Hydrocarbons:</u> The maximum concentration of TRPH in a confirmation sample collected from this remedial excavation was 9 mg/kg (sample OA1-GS-59-5'). This concentration is below the permissible limits for petroleum hydrocarbons and therefore TRPH was not speciated.

<u>VOCs:</u> Trichloroethene was detected in five samples; however, the maximum concentration reported was 0.014 mg/kg (sample OA1-GS-58-10'), which is below the HBRG of 1,050 mg/kg.

SVOCs: SVOCs were not detected.

PCBs: PCBs were not detected.

Metals: All concentrations were below TTLC, 10 times the STLC, and HBRGs.

<u>Conclusion:</u> The data indicate that the residual soils in the OA1-RE-4 excavation meet the soil screening criteria established in Section 3.1 of this report. Approval to backfill this excavation is requested.

3.2.2 OA1-RE-5 Remedial Excavation

Confirmation sample data are presented in Table 3 and can be summarized as follows:

<u>Petroleum hydrocarbons</u>: The maximum concentration of TRPH in a confirmation sample collected from this remedial excavation was 19 mg/kg (sample OA1-GS-67-5'). This concentration is below the permissible limit for petroleum hydrocarbons and therefore TRPH was not speciated.

<u>VOCs:</u> Four VOCs were detected only in sample OA1-GS-60-6'; however, none were reported in concentration which met or exceeded respective HBRGs.

SVOCs: SVOCs were not detected.

PCBs: PCBs were not detected.

Metals: All concentrations were below TTLC, 10 times the STLC, and HBRGs.

<u>Conclusion:</u> The data indicate that the residual soils in the OA1-RE-5 excavation meet the soil screening criteria established in Section 3.1 of this report. Approval to backfill this excavation is requested.

3.2.3 OA1-RE-6 Remedial Excavation

Confirmation sample data are presented in Table 4 and can be summarized as follows:

<u>Petroleum hydrocarbons</u>: The maximum concentration of TRPH in a confirmation sample collected from this remedial excavation was 6,000 mg/kg (sample OA1-GS-71-12'). This concentration is below the permissible limit for petroleum hydrocarbons and therefore TRPH was not speciated.

<u>VOCs:</u> Ten VOCs were detected; however, none were reported in concentration which met or exceeded HBRGs.

<u>SVOCs</u>: Four SVOCs were detected; however, none were reported in concentration which met or exceeded HBRGs.

PCBs: PCBs were not detected.

Metals: All concentrations were below TTLC, 10 times the STLC, and HBRGs.

<u>Conclusion:</u> The data indicate that the residual soils in the OA1-RE-6 excavation meet the soil screening criteria established in Section 3.1 of this report. Approval to backfill this excavation is requested.

SECTION 4.0

BIBLIOGRAPHY

- Department of Water Resources, Southern District, <u>Bulletin 104</u>, <u>Planned Utilization of the Ground Water Basins of the Coastal Plain of Los Angeles County</u>, <u>Appendix A, Ground Water Geology</u>, 1961.
- Dames & Moore, <u>Phase I Remedial Investigation Report, Del Amo Study Area, Los Angeles, California, October 1993.</u>
- Geraghty & Miller, <u>Baseline Risk Assessment</u>, <u>International Light Metals Division Facility</u>, <u>Prepared for Lockheed Martin Corporation</u>, March 1996.
- Integrated Environmental Services, Inc., <u>Sampling and Analysis Plan for Demolition</u>
 <u>Activities at the Douglas Aircraft Company C-6 Facility</u>, 1997(a).
- Integrated Environmental Services, Inc., <u>Health-Based Remediation Goals for Surface Soils</u>, 1997(b).
- Kennedy/Jenks Consultants, <u>Phase I Environmental Assessment</u>, <u>Parcel A</u>, March 20, 1996(a).
- Kennedy/Jenks Consultants, <u>Final Phase II Subsurface Investigation</u>, <u>Douglas Aircraft Company C-6 Facility</u>, <u>Parcel A, Torrance</u>, <u>California</u>, June 5, 1996(b).
- Kennedy/Jenks Consultants, <u>Supplemental Subsurface Investigation</u>, <u>Douglas Aircraft C-6 Facility</u>, <u>Torrance</u>, <u>California</u>, August 14, 1996(c).
- Montgomery Watson, <u>Addendum to Soil Stockpile Report, Parcel A, Report No. 1, McDonnell Douglas C-6 Facility Demolition, Los Angeles, California,</u> 1997(a).
- Montgomery Watson, <u>Post-Remedial Excavation Confirmation Sample Report, Parcel A.</u> Report No. 1, McDonnell Douglas C-6 Facility, Los Angeles, California, 1997(b).
- Montgomery Watson, <u>Post-Remedial Excavation Confirmation Sample Report, Parcel A, Report No. 2, McDonnell Douglas C-6 Facility, Los Angeles, California, 1997(c).</u>
- Montgomery Watson, <u>Post-Remedial Excavation Confirmation Sample Report, Parcel A</u>, Report No. 3, McDonnell Douglas C-6 Facility, Los Angeles, California, 1997(d).
- Montgomery Watson, <u>Post-Remedial Excavation Confirmation Sample Report, Parcel A.</u> Report No. 4, Boeing Realty Corporation C-6 Facility, Los Angeles, California, 1997(e).

Montgomery Watson, Soil Stockpile Report, Parcel A, Report No. 1, McDonnell Douglas C-6 Facility, Los Angeles, California, 1997(f).

(Name

(F 2

Montgomery Watson, Soil Stockpile Report, Parcel A. Report No. 2, McDonnell Douglas C-6 Facility, Los Angeles, California, 1997(g).

Montgomery Watson, Soil Stockpile Report, Parcel A, Report No. 3, McDonnell Douglas C-6 Facility, Los Angeles, California, 1997(h).

Montgomery Watson, <u>Soil Stockpile Report, Parcel A, Report No. 4, Boeing Realty Corporation, Los Angeles, California</u>, 1997(i).

Montgomery Watson, Soil Stockpile Report, Parcel A, Report No. 5. Boeing Realty Corporation, Los Angeles, California, 1997(j).

BOE-C6-0061804

BOEING REALTY CORPORATION C-6 FACILITY

Remedial Excavation OA1-RE-5 Confirmation Sample Locations

FIGURE 5

BOEING REALTY CORPORATION C-6 FACILITY

FIGURE 6

FIGURE 7
Soil Screening Evaluation Process

60.00

Tables

TABLE 1
Summary of Soil Sample Analytical Methods

Sample Type	EPA Method	Analyte
Hot Spot Sample	418.1	TRPH (a)
	6000/7000	Metals
	8260	VOCs
	8270	SVOCs
	8080	PCBs
	8015M	Fuel Characterization
Stockpile Sample	418.1	TRPH (a)
-	6000/7000	Metals
	8260	VOCs
	8270	SVOCs
:	8080	PCBs (b)
Confirmation Sample	418.1	TRPH (a)
	6000/7000	Metals
	8260	VOCs (c)
	8270	SVOCs (c)
	8080	PCBs (d)

Notes:

TRPH Total Recoverable Petroleum Hydrocarbons

VOCs Volatile Organic Compounds

SVOCs Semi-volatile Organic Compounds.

PCBs Polychlorinated Biphenyls

- (a) Samples exhibiting TRPH concentration greater than 10,000 mg/kg were submitted for carbon chain analysis.
- (b) One sample per remedial excavation.
- (c) The number of confirmation samples analyzed for VOCs and SVOCs is approximately equal to the number of stockpile samples analyzed for VOCs and SVOCs. Confirmation samples are selected for analysis of VOCs and SVOCs based on highest TRPH concentration, and location of evenly spaced confirmation sample locations.
- (d) Generally, one sample per each remedial excavation, or following the removal of each 2500 cubic yards of soil, whichever is less.

TABLE 2 Analytical Data Summary Remedial Excavation OA1-RE-4 Confirmation Samples Page 1 of 4

	Sample Number, Collection Date, Grid Location and Depth						
Analyte	EPA Method	OA1-GS-41-6' 7/23/97 A.9-32.5 @ 6' bgs*	OA1-GS-42-6' 7/23/97 A.9-31.5 @ 6' bgs*	OA1-GS-43-4' 7/24/97 A.9-30.5 @ 4' bgs*	OA1-GS-48-12' 7/25/97 A.8/A.9-32.5 @ 12' bgs*		
TRPH (mg/kg)	418.1	<8.0	<8.0	<8.0	<8.0	Regulato	ry Levels
				The state of the s		TTLC	STLC
Title 22 Metals (mg/kg)						(mg/kg)	(mg/L)
Antimony	6010	<5.0	<5.0	<5.0	<5.0	500	15
Arsenic	6010	<1.0	<1.0	<1.0	<1.0	500	5
Barium	6010	93	92	100	130	10,000	100
Beryllium	6010	<0.1	<0.1	<0.1	<0.1	75	0.75
Cadmium	6010	<0.1	<0.1	<0.1	<0.1	100	1
Chromium (VI)	7196	<0.5	<0.5	<0.5	<0.5	500	5
Chromium (total)	6010	23	26	21	31	2,500	5
Cobalt	6010	6.8	4.9	5.6	8.3	8,000	80
Copper	6010	9.0	9.9	9.3	19	2,500	25
Lead (total)	6010	<1.0	<1.0	<1.0	<1.0	1,000	5
Mercury	7471	<0.01	<0.01	<0.01	<0.01	20	0.2
Molybdenum	6010	<0.5	<0.5	<0.5	<0.5	3,500	350
Nickel	6010	8.8	8.5	8.0	15	2,000	20
Selenium	6010	<1.0	<1.0	<1.0	<1.0	100	11
Silver	6010	<0.1	<0.1	<0.1	<0.1	500	5
Thallium	6010	<5.0	<5.0	<5.0	<5.0	700	7
Vanadium	6010	27	30	24	38	2,400	2 4
Zinc	6010	31	34	35	54	5,000	250
VOCs (1) (mg/kg)				•		ļ	
Trichloroethene	8260	0.0026			0.0025		
				T	The second secon	1	
SVOCs (mg/kg)	8270	ND			L ND		
			T		T	1	
Carbon Chain Range (mg/kg)	8015m					-	
			T	1	T	-	
PCBs (mg/kg)	8080					j	

mg/kg = milligrams per kilogram
mg/L = milligrams per liter
VOCs = Volatile Organic Compounds
SVOCs = Semi-volatile Organic Compounds

TRPH = Total Recoverable Petroleum Hydrocarbons PCBs = polychlorinated biphenyls

bgs = below ground surface

-- = not analyzed

ND = none detected

(1) VOCs not listed were not detected

TTLC = California Total Threshold Limit Concentration

STLC = California Soluble Threshold Limit Concentration

^{*} Refer to Figure 4 for sample locations

TABLE 2 Analytical Data Summary Remedial Excavation OA1-RE-4 Confirmation Samples Page 2 of 4

			Sample Number, Collection Da	ate, Grid Location and Depth			
Analyte	EPA Method	OA1-GS-49-12' 7/25/97 A.8/A.9-31.5 @ 12' bgs*	OA1-GS-50-12' 7/25/97 A.8/A.9-30.5 @ 12' bgs*	OA1-GS-55-3' 7/25/97 A.8-32.5 @ 3' bgs*	OA1-GS-56-3' 7/25/97 A.8-30.5 @ 3' bgs*		
TRPH (mg/kg)	418.1	<8.0	<8.0	<8.0	<8.0	Regulato	ry Levels
	3,673.6	<u> </u>				TTLC	STLC
Title 22 Metals (mg/kg)	1				Ţ	(mg/kg)	(mg/L)
Antimony	6010	<5.0	<5.0	<5.0	<5.0	500	15
Arsenic	6010	<1.0	<1.0	<1.0	<1.0	500	5
Barium	6010	93	110	82	140	10,000	100
Beryllium	6010	<0.1	<0.1	<0.1	<0.1	75	0.75
Cadmium	6010	<0.1	<0.1	<0.1	<0.1	100	1
Chromium (VI)	7196	<0.5	<0.5	<0.5	<0.5	500	5
Chromium (total)	6010	25	29	22	30	2,500	5
Cobalt	6010	6.8	6.8	5.0	6.1	8,000	80
Copper	6010	17	17	9.5	14	2,500	25
Lead (total)	6010	<1.0	<1.0	<1.0	<1.0	1,000	5
Mercury	7471	<0.01	<0.01	<0.01	<0.01	20	0.2
Molybdenum	6010	<0.5	<0.5	<0.5	<0.5	3,500	350
Nickel	6010	14	15	7.3	10	2,000	20
Selenium	6010	<1.0	<1.0	<1.0	<1.0	100	1
Silver	6010	<0.1	<0.1	<0.1	<0.1	500	5
Thallium	6010	<5.0	<5.0	<5.0	<5.0	700	7
Vanadium	6010	31	34	24	34	2,400	2 4
Zinc	6010	45	47	30	46	5,000	250
VOCs (1) (mg/kg)							
Trichloroethene	8260	••	••	0.0046	0.0038		
SVOCs (mg/kg)	8270			ND	ND ND		
Carbon Chain Range (mg/kg)	8015m						
DCDo (malke)	T 2000 T		T				
PCBs (mg/kg)	8080		· · · · · · · · · · · · · · · · · · ·				

mg/kg = milligrams per kilogram
mg/L = milligrams per liter
VOCs = Volatile Organic Compounds
SVOCs = Semi-volatile Organic Compounds

TRPH = Total Recoverable Petroleum Hydrocarbons
PCBs = polychlorinated biphenyls
bgs = below ground surface
--- = not analyzed

ND = none detected

(1) VOCs not listed were not detected

TTLC = California Total Threshold Limit Concentration STLC = California Soluble Threshold Limit Concentration

^{*} Refer to Figure 4 for sample locations

TABLE 2 **Analytical Data Summary** Remedial Excavation OA1-RE-4 Confirmation Samples Page 3 of 4

		Sample Number, Collection Date, Grid Location and Depth]	
Analyte	EPA Method	OA1-GS-57-6' 7/25/97 A.8-28.5 @ 6' bgs*	OA1-GS-58-10' 7/25/97 A.8/A.9-28.5 @ 10' bgs*	OA1-GS-59-5' 7/25/97 A.9-28.5 @ 5' bgs*	OA1-GS-79-3' 8/12/97 A.6/A.7-34.5 @ 3' bgs*		
TRPH (mg/kg)	418.1	<8.0	<8.0	9.0	<8.0	Regulato	ry Levels
						TTLC	STLC
Title 22 Metals (mg/kg)		·				(mg/kg)	(mg/L)
Antimony	6010	<5.0	<5.0	<5.0	<5.0	500	15
Arsenic	6010	<1.0	<1.0	<1.0	<1.0	500	5
Barium	6010	72	92	87	84	10,000	100
Beryllium	6010	<0.1	<0.1	<0.1	<0.1	75	0.75
Cadmium	6010	<0.1	<0.1	<0.1	<0.1	100	1
Chromium (VI)	7196	<0.5	<0.5	<0.5	<0.5	500	5
Chromium (total)	6010	28	26	20	21	2,500	5
Cobalt	6010	4.2	6.5	8.8	4.3	8,000	80
Copper	6010	12	14	12	8.6	2,500	25
Lead (total)	6010	<1.0	<1.0	<1.0	<1.0	1,000	5.
Mercury	7471	< 0.01	<0.01	<0.01	<0.01	20	0.2
Molybdenum	6010	<0.5	<0.5	<0.5	<0.5	3,500	350
Nickel	6010	8.4	13	. 13	7.0	2,000	20
Selenium	6010	<1.0	<1.0	<1.0	<1.0	100	1
Silver	6010	<0.1	<0.1	<0.1	<0.1	500	5
Thallium	6010	<5.0	<5.0	<5.0	<5.0	700	7
Vanadium	6010	25	31	27	22	2,400	24
Zinc	6010	46	49	43	25	5,000	250

VOCs (1) (mg/kg)						1	
Trichloroethene	8260	••	0.014	<0.0025	<0.0025		
	300000						
SVOCs (mg/kg)	8270		ND I	ND ND	l ND]	
Onton Otalia Danas (m. 11	1 2045				T		
Carbon Chain Range (mg/kg)	8015m	••					
PCBs (mg/kg)	8080		T I	ND ND	T		

mg/kg = milligrams per kilogram mg/L = milligrams per liter
VOCs = Volatile Organic Compounds
SVOCs = Semi-volatile Organic Compounds TRPH = Total Recoverable Petroleum Hydrocarbons

PCBs = polychlorinated biphenyls bgs = below ground surface

-- = not analyzed

ND = none detected

(1) VOCs not listed were not detected
TTLC = California Total Threshold Limit Concentration

STLC = California Soluble Threshold Limit Concentration

^{*} Refer to Figure 4 for sample locations

TABLE 2 Analytical Data Summary Remedial Excavation OA1-RE-4 Confirmation Samples Page 4 of 4

			Sample Number, Collection	Date, Grid Location and Depth		1	
Analyte	EPA Method	OA1-GS-80-2' 8/12/97 A.6/A.7-33 @ 2' bgs*	OA1-GS-81-2' 8/12/97 A.7-34.5 @ 2' bgs*	OA1-GS-82-2' 8/12/97 A.6/A.7-35.5 @ 2' bqs*	OA1-GS-83-2' 8/12/97 A.6-34.5 @ 2' bgs*		
TRPH (mg/kg)	418.1	<8.0	<8.0	<8.0	<8.0	Regulato	ry Levels
						TTLC	STLC
Title 22 Metals (mg/kg)						(mg/kg)	(mg/L)
Antimony	6010	<5.0	<5.0	<5.0	<5.0	500	15
Arsenic	6010	<1.0	<1.0	<1.0	<1.0	500	5
Barium	6010	96	97	96	94	10,000	100
Beryllium	6010	<0.1	<0.1	<0.1	<0.1	75	0.75
Cadmium	6010	<0.1	<0.1	<0.1	<0.1	100	1
Chromium (VI)	7196	<0.5	<0.5	<0.5	<0.5	500	5
Chromium (total)	6010	19	23	27	26	2,500	5
Cobalt	6010	6.3	7.2	5.9	4.7	8,000	80
Copper	6010	9.8	8.0	9.7	10	2,500	2.5
Lead (total)	6010	<1.0	<1.0	<1.0	<1.0	1,000	5
Mercury	7471	<0.01	<0.01	<0.01	<0.01	20	0.2
Molybdenum	6010	<0.5	<0.5	<0.5	<0.5	3,500	350
Nickel	6010	6.0	6.9	7.0	7.5	2,000	20
Selenium	6010	<1.0	<1.0	<1.0	<1.0	100	1
Silver	6010	<0.1	<0.1	<0.1	<0.1	500	5
Thallium	6010	<5.0	<5.0	<5.0	<5.0	700	7
Vanadium	6010	26	26	30	27	2,400	2 4
Zinc	6010	27	28	34	33	5,000	250
VOCs (1) (mg/kg)						1	
Trichloroethene	8260		••		••]	
SVOCs (mg/kg)	8270		<u></u>	<u></u>		-	
Carbon Chain Range (mg/kg)	8015m	<u></u> I				1	
				T		1	
PCBs (mg/kg)	8080	<u> </u>		<u> </u>	**	j	

mg/kg = milligrams per kilogram
mg/L = milligrams per liter
VOCs = Volatile Organic Compounds
SVOCs = Semi-volatile Organic Compounds

TRPH = Total Recoverable Petroleum Hydrocarbons PCBs = polychlorinated biphenyls

bgs = below ground surface

-- = not analyzed

ND = none detected

(1) VOCs not listed were not detected

TTLC = California Total Threshold Limit Concentration STLC = California Soluble Threshold Limit Concentration

^{*} Refer to Figure 4 for sample locations

TABLE 3
Analytical Data Summary
Remedial Excavation OA1-RE-5 Confirmation Samples

	i		Samp	le Number, Collection I	Date, Grid Location and Dep	oth			
Analyte	EPA Method	OA1-GS-60-6' 7/25/97 A.8-26.5 @ 6' bgs*	OA1-GS-61-10' 7/25/97 A.8/A.9-26.5 @ 10' bgs*	OA1-GS-62-6' 7/25/97	OA1-GS-66-9' 7/28/97	OA1-GS-67-5' 7/28/97	OA1-GS-67A-5' 8/8/97 A.9-24.5 @ 5' bgs*		
			1	4.0	T	4.0	T	D1-1	
TRPH (mg/kg)	418.1	<8.0	<8.0	13	<8.0	19		TTLC	STLC
			(1) A DESCRIPTION OF THE PROPERTY OF THE PROPE		5 () () () () () () () () () (SCOTE MANAGEMENT NEWSCOOLS (CO.) CO.		1	1
Title 22 Metals (mg/kg)	6010	<5.0	<5.0	<5.0	<5.0	<5.0	T	(mg/kg) 500	(mg/L) 15
Antimony							**		
Arsenic	6010	<1.0	<1.0	<1.0	<1.0	<1.0		500	5
Barium	6010	80	110	220	86	130		10,000	100
Beryllium	6010	<0.1	<0.1	<0.1	<0.1	<0.1		7.5	0.75
Cadmium	6010	<0.1	<0.1	<0.1	<0.1	<0.1		100	1
Chromium (VI)	7196	<0.5	<0.5	<0.5	<0.5	<0.5	••	500	5
Chromium (total)	6010	19	24	49	28	22	••	2,500	5
Cobalt	6010	7.9	15	6.6	7.5	7.1	**	8,000	80
Copper	6010	12	9.3	13	16	8.9	••	2,500	25
Lead (total)	6010	<1.0	<1.0	<1.0	<1.0	<1.0		1,000	5
Mercury	7471	<0.01	<0.01	< 0.01	<0.01	<0.01		20	0.2
Molybdenum	6010	<0.5	<0.5	<0.5	<0.5	<0.5		3,500	350
Nickel	6010	12	9.3	11	12	7.6		2,000	20
Selenium	6010	<1.0	<1.0	<1.0	<1.0	<1.0		100	1
Silver	6010	<0.1	<0.1	<0.1	<0.1	<0.1		500	5
Thallium	6010	<5.0	<5.0	<5.0	<5.0	<5.0		700	7
Vanadium	6010	25	29	45	33	22		2,400	2 4
Zinc	6010	43	38	58	63	37		5,000	250
VOCs (1) (mg/kg)									
1,1-Dichloroethane	8260	0.0030		< 0.0025		<0.0025			
1.1.1-Trichloroethane	8260	0.0050		<0.0025		<0.0025			
1,1,2-Trichloroethane	8260	0.010		<0.0025		<0.0025			
Trichloroethene	8260	0.140		<0.0025		<0.0025			
SVOCs (mg/kg)	8270	ND	I	ND		ND			
Carbon Chain Range (mg/kg)	8015m								
PCBs (mg/kg)	8080		•		••		ND		

mg/kg = milligrams per kilogram
mg/L = milligrams per liter
VOCs = Volatile Organic Compounds
SVOCs = Semi-volatile Organic Compounds
TRPH = Total Recoverable Petroleum Hydrocarbons

-- = not analyzed
bgs = below ground surface
ND = none detected
PCBs = polychlorinated biphenyls

(1) VOCs not listed were not detected TTLC = California Total Threshold Limit Concentration

STLC = California Total Threshold Limit Concentration

^{*} Refer to Figure 5 for sample locations

BOE-C6-0061817

TABLE 4 **Analytical Data Summary** Remedial Excavation OA1-RE-6 Confirmation Samples

			Sample Numbe	r, Collection Date, Grid Loc	cation and Depth		1	
		OA1-GS-68-6' 7/28/97	OA1-GS-69-8' 7/28/97	OA1-GS-70-5' 8/5/97	OA1-GS-71-12' 8/5/97	OA1-GS-72-5' 8/5/97		
Analyte	EPA Method	A.7-22.5 @ 6' bgs*	A.8-22.5 @ 8' bgs*	A.9-22.5 @ 5' bgs*	A.7-20.5 @ 12' bgs*	A.9-20.5 @ 5' bgs*		
TBDU ((1)	440.4	• • •	T	T ===	0.000			
TRPH (mg/kg)	418.1	<8.0	<8.0	76	6,000	<8.0		ory Levels
Title 00 Mat-1- ((1)	261-26-451-551-561-551-52-	<u></u>		SCHOOL SECTION ASSESSMENT OF THE SCHOOL			TTLC	STLC
Title 22 Metals (mg/kg) Antimony	6010	-5.0		1 50	1		(mg/kg)	(mg/L)
	6010	<5.0 <1.0	<5.0	<5.0	<5.0	<5.0	500	15
Arsenic			<1.0	<1.0	<1.0	<1.0	500	5
Barium	6010	120	150	110	270	120	10,000	100
Beryllium		<0.1	<0.1	<0.1	<0.1	<0.1	7.5	0.75
Cadmium	6010	<0.1	<0.1	<0.1	<0.1	<0.1	100	11
Chromium (VI)	7196	<0.5	<0.5	<0.5	<0.5	<0.5	500	5
Chromium (total)	6010	23	25	20	32	22	2,500	5
Cobalt	6010	7.1	18	5.9	4.4	8.8	8,000	80
Copper	6010	11	13	9.4	11	9.9	2,500	25
Lead (total)	6010	<1.0	<1.0	<1.0	<1.0	<1.0	1,000	5
Mercury	7471	<0.01	<0.01	<0.01	<0.01	<0.01	20	0.2
Molybdenum	6010	<0.5	<0.5	<0.5	<0.5	<0.5	3,500	350
Nickel	6010	7.5	12	7.1	8.9	7.8	2,000	20
Selenium	6010	<1.0	<1.0	<1.0	<1.0	<1.0	100	1
Silver	6010	<0.1	<0.1	<0.1	<0.1	<0,1	500	5
Thallium	6010	<5.0	<5.0	<5.0	<5.0	<5.0	700	7
Vanadium	6010	24	30	20	28	23	2,400	24
Zinc	6010	42	47	46	53	52	5,000	250
			177.00					
VOCs (1) (mg/kg)								
Trichloroethene	8260		0.0089	0.024	0.130	0.041	1	
Total Xylenes	8260		<0.0025	<0.0025	0.410	<0.0025	1	
Isopropylbenzene	8260		<0.0025	<0.0025	0.300	<0.0025	1	
n-Propylbenzene	8260		<0.0025	<0.0025	0.330	<0.0025	1	
1,3,5-Trimethylbenzene	8260	•-	<0.0025	<0.0025	0.580	<0.0025	1	
1,2,4-Trimethylbenzene	8260		<0.0025	<0.0025	2.600	<0.0025	1	
sec-Butylbenzene	8260		<0.0025	<0.0025	0.340	<0.0025	1	
p-isopropyltoluene	8260		<0.0025	<0.0025	0.340	<0.0025	1	
n-Butylbenzene	8260		<0.0025	<0.0025	0.410	<0.0025	1	
Naphthalene	8260		<0.0025	<0.0025	2.000	<0.0025	1	
		Alexander Santa				1010020	1	
SVOCs (1) (mg/kg)							1	
Fluorene	8270		<0.100	<0.100	2.500	<0.100	1	
2-Methylnaphthalene	8270		<0.100	< 0.100	16.000	<0.100	1	
Naphthalene	8270		< 0.100	< 0.100	5.300	< 0.100]	
Phenanthrene	8270		<0.100	<0.100	5.200	< 0.100		
Carbon Chain Range (mg/kg)	8015m	•-						
]	
PCBs (mg/kg)	8080		T		l NO		1	

mg/kg = milligrams per kilogram mg/L = milligrams per liter -- = not analyzed

bgs = below ground surface

* Refer to Figure 6 for sample locations

ND = none detected

VOCs = Volatile Organic Compounds SVOCs = Semi-volatile Organic Compounds

TRPH = Total Recoverable Petroleum Hydrocarbons

PCBs = polychlorinated biphenyls

(1) VOCs and SVOCs not listed were not detected TTLC = California Total Threshold Limit Concentration

STLC = California Soluble Threshold Limit Concentration

TABLE 5
Health-Based Remediation Goals (HBRGs) for
Organic Constituents Soil Exposure Pathways (mg/kg)
Page 1 of 5

Qad.

6659

560

1

Lasi

	Construction	Commercial/	
	Worker	Industrial User	Final
Constituent	Initial HBRG	Initial HBRG	HBRG
1-butanol	1.98E+04	3.46E+04	1.98E+04
1,1-dichloroethane	2.23E+03	1.10E+03	1.10E+03
1,1-dichloroethene	1.57E+01	4.21E+00	4.21E+00
1,1,1,2-tetrachloroethane	4.98E+02	1.44E+04	4.98E+02
1,1,2-trichloroethane	2.23E+02	1.26E+03	2.23E+02
1,1,2,2-tetrachloroethane	6.25E+01	1.50E+03	6.25E+01
1,2-dibromo-3-chloropropane	2.42E+00	7.47E+01	2.42E+00
1,2-dibromoethane	4.86E+00	1.84E+02	4.86E+00
1,2-dichlorobenzene	NA	2.64E+06	2.64E+06
1,2-dichloroethane	2.06E+02	2.66E+02	2.06E+02
1,2-dichloropropane	3.37E+01	7.25E+00	7.25E+00
1,2-diphenylhydrazine	2.03E+01	2.36E+08	2.03E+01
1,2,3-trichloropropane	2.39E+00	4.08E+01	2.39E+00
1,2,4-trichlorobenzene	1.74E+02	4.74E+07	1.74E+02
1,3-dichloropropene	4.83E+01	6.63E+02	4.83E+01
1,4-dichlorobenzene	4.32E+02	4.37E+04	4.32E+02
2-butanone	3.28E+04	2.35E+06	3.28E+04
2-chlorophenol	8.57E+02	1.17E+06	8.57E+02
2-methylphenol	8.66E+03	7.59E+07	8.66E+03
2-naphthylamine	9.81E+00	1.63E+06	9.81E+00
2,4-dichlorophenol	5.21E+01	2.22E+07	5.21E+01
2,4-dimethylphenol	3.48E+03	4.37E+08	3.48E+03
2,4-dinitrophenol	3.49E+01	7.14E+09	3.49E+01
2,4-dinitrotoluene	3.48E+01	7.62E+06_	3.48E+01
2,4,5-trichlorophenol	1.73E+04	2.21E+08	1.73E+04
2,4,6-trichlorophenol	2.52E+02	1.10E+07	2.52E+02
2,6-dinitrotoluene	2.59E+01	4.51E+05	2.59E+01
3,3-dichlorobenzidine	1.47E+01	7.53E+08	1.47E+01
4-chloroaniline	6.93E+01	6.50E+06	6.93E+01
4-methyl-2-pentanone	1.20E+04	6.84E+05	1.20E+04
4-methylphenol	8.69E+01	4.01E+07	8.69E+01
4,4-ddd	1.03E+02	9.97E+08	1.03E+02
4,4-dde	7.28E+01	2.83E+06	7.28E+01
4,4-ddt	1.22E+01	2.26E+08	1.22E+01
acenaphthene	8.10E+03	1.62E+08	8.10E+03
acetone	1.55E+04	4.37E+05	1.55E+04
acrolein	NA NA	8.05E+01	8.05E+01
acrylonitrile	1.59E+01	7.65E+01_	1.59E+01

TABLE 5
Health-Based Remediation Goals (HBRGs) for
Organic Constituents Soil Exposure Pathways (mg/kg)
Page 2 of 5

	Construction Worker	Commercial/ Industrial User	Final
	Initial HBRG	Industrial Oser Initial HBRG	Final HBRG
Constituent			
aldrin	7.32E-01 3.93E+00	2.82E+04	7.32E-01
alpha-bhc		2.32E+05	3.93E+00
aniline	3.10E+03	1.02E+07	3.10E+03
anthracene	4.06E+03	1.37E+10	4.06E+03
aroclor 1016	NA 8 70E 01	7.35E+05 5.69E+05	7.35E+05
aroclor 1254	8.70E-01	3.69E+03 1.71E+02	8.70E-01
benzene	1.43E+02		1.43E+02
benzidine	3.52E-02	1.55E+02	3.52E-02
benzoic acid	6.96E+04	6.58E+10	6.96E+04
benzo(a)anthracene	1.14E+01	1.13E+09	1.14E+01
benzo(a)pyrene	1.14E+00	9.56E+07	1.14E+00
benzo(b)fluoranthene	1.14E+01	3.19E+08	1.14E+01
benzo(k)fluoranthene	1.14E+01	9.56E+07	1.14E+01
benzyl alcohol	1.73E+04	3.81E+08	1.73E+04
benzyl chloride	1.00E+02	4.03E+03	1.00E+02
beta-bhc	1.38E+01	9.94E+06	1.38E+01
beta-chloronaphthalene	NA NA	2.32E+07	2.32E+07
bis(2-chloro-1-methylethyl)ether	2.49E+02	2.93E+04	2.49E+02
bis(2-chloroethyl)ether	6.91E+00	6.91E+02	6.91E+00
bis(2-ethylhexyl)phthalate	2.10E+03	3.59E+09	2.10E+03
bromodichloromethane	1.30E+02	2.94E+03	1.30E+02
bromoform	3.34E+02	1.28E+05	3.34E+02
bromomethane	NA	1.15E+02	1.15E+02
carbazole	8.83E+02	6.66E+08	8.83E+02
carbon disulfide	1.43E+03	7.04E+04	1.43E+03
carbon tetrachloride	9.71E+01	1.35E+02	9.71E+01
chlordane	1.04E+00	1.55E+05	1.04E+00
chlorobenzene	NA NA	2.83E+04	2.83E+04
chloroform	1.49E+02	9.58E+02	1.49E+02
chloromethane	7.43E+02	7.40E+01	7.40E+01
chrysene	1.14E+02	5.06E+10	1.14E+02
cis-1,2-dichloroethene	1.34E+03	7.51E+03	1.34E+03
cumene	3.79E+03	5.73E+04	3.79E+03
dibenzo(a,h)anthracene	3.35E+00	6.34E+11	3.35E+00
dibromochloromethane	1.50E+02	1.54E+02	1.50E+02
dichlorodifluoromethane	2.14E+03	7.01E+02	7.01E+02
dieldrin	1.22E+00	2.33E+04	1.22E+00
diethyl phthalate	1.39E+05	6.03E+09	1.39E+05
di-n-butylphthalate	1.74E+04	4.19E+08	1.74E+04

TABLE 5 Health-Based Remediation Goals (HBRGs) for Organic Constituents Soil Exposure Pathways (mg/kg) Page 3 of 5

(383)

wed

Card

<u> </u>	Construction	Commercial/	
,	Worker	Industrial User	Final
Constituent	Initial HBRG	Initial HBRG	HBRG
di-n-octylphthalate	3.49E+02	1.80E+10	3.49E+02
endosulfan	1.46E+02	2.14E+08	1.46E+02
endrin	7.33E+00	1.37E+08	7.33E+00
ethyl chloride	1.42E+05	1.57E+06	1.42E+05
ethylbenzene	NA NA	7.33E+05	7.33E+05
fluoranthene	6.97E+03	3.03E+10	6.97E+03
fluorene	6.94E+03	1.40E+08	6.94E+03
gamma-bhc	2.32E+01	2.63E+05	2.32E+01
heptachlor	2.87E+00	1.78E+03	2.87E+00
heptachlor epoxide	3.14E-01	1.35E+03	3.14E-01
hexachlorobenzene	9.69E+00	2.80E+03	9.69E+00
hexachlorobutadiene	2.24E+02	7.13E+04	2.24E+02
hexachlorocyclopentadiene	8.87E+01	9.79E+02	8.87E+01
hexachloroethane	1.73E+02	2.39E+05	1.73E+02
indeno(1,2,3-cd)pyrene	1.47E+01	1.23E+11	1.47E+01
isobutyl alcohol	4.81E+04	2,55E+06	4.81E+04
isophorone	1.85E+04	2.92E+07	1.85E+04
methoxychlor	8.71E+01	1.48E+09	8.71E+01
methyl methacrylate	1.06E+03	5.56E+04	1.06E+03
methylene bromide	1.51E+03	2.75E+04	1.51E+03
methylene chloride	1.07E+03	1.26E+03	1.07E+03
methyl-tert-butyl ether	NA NA	1.39E+06	1.39E+06
n-butylbenzyl phthalate	3.48E+03	6.52E+09	3.48E+03
nitroaniline, o-	8.07E+03	2,45E+06	8.07E+03
nitrobenzene	8.61E+01	1.78E+05	8.61E+01
nitrosodiphenylamine, p-	8.02E+02	1.03E+07	8.02E+02
n-nitrosodimethylamine	2.60E-01	1.38E-02	1.38E-02
n-nitroso-di-n-propylamine	2.48E+00	4.46E+02	2.48E+00
n-nitrosodiphenylamine	1.96E+03	4.80E+09	1.96E+03
o-chlorotoluene	3.14E+03	1.05E+05	3.14E+03
p-chloro-m-cresol	3.48E+04	NA NA	3.48E+04
pentachlorophenol	3.04E+02	3.09E+07	3.04E+02
phenol	1.04E+04	3.14E+09	1.04E+04
pyrene	2.35E+03	4.11E+10	2.35E+03
styrene	3.02E+05	7.58E+06	3.02E+05
tetrachloroethene	3.36E+02	7.52E+03	3.36E+02
toluene	3.12E+04	2.41E+05	3.12E+04
toxaphene	1.47E+01	9.16E+04	1.47E+01
trans-1,2-dichloroethene	2.68E+03	1.47E+04	2.68E+03

TABLE 5 Health-Based Remediation Goals (HBRGs) for Organic Constituents Soil Exposure Pathways (mg/kg) Page 4 of 5

Constituent	Construction Worker Initial HBRG	Commercial/ Industrial User Initial HBRG	Final HBRG
trichloroethene	1.05E+03	1.39E+03	1.05E+03
trichlorofluoromethane	1.03E+04	4.89E+04	1.03E+04
vinyl acetate	5.41E+03	2.31E+05	5.41E+03
vinyl chloride	5.16E+00	1.81E-01	1.81E-01
xylenes	3.26E+04	2.61E+07	3.26E+04

TABLE 5 Health-Based Remediation Goals (HBRGs) for Inorganic Constituents Soil Exposure Pathways (mg/kg) Page 5 of 5

	,	,	,
	Initial	ILM	Final
Compound	HBRG	Background*	HBRG
aluminum	NT	3.63E+04	3.63E+04
antimony	9.05E+00	5.00E+00	9.05E+00
arsenic	8.87E+00	1.40E+01	1.40E+01
barium	2.52E+03	2.81E+02	2.52E+03
beryllium	1.56E+01	7.40E-01	1.56E+01
cadmium	1.64E+01	8.80E-01	1.64E+01
calcium	NT	3.80E+04	3.80E+04
chromium iii	3.22E+04	4.10E+01	3.22E+04
chromium vi	9.73E+01	NA	9.73E+01
cobalt	NT	2.00E+01	2.00E+01
copper	1.26E+03	5.30E+01	1.26E+03
cyanide	6.99E+02	NA	6.99E+02
iron	NT	6.05E+04	6.05E+04
lead	NT	1.11E+02	1.11E+02
mercury	6.78E+00	2.80E-01	6.78E+00
molybdenum	1.24E+03	2.30E+01	1.24E+03
nickel	2.39E+02	2.90E+01	2.39E+02
potassium	NT	8.26E+03	8.26E+03
selenium	1.82E+02	1.24E+03	1.24E+03
silver	1.30E+02	2.39E+02	2.39E+02
sodium	NT	1.96E+03	1.96E+03
thallium	NT	1.10E+01	1.10E+01
titanium	NT	1.95E+03	1.95E+03
vanadium	8.37E+01	8.20E+01	8.37E+01
zinc	8.73E+03	1.98E+02	8.73E+03

NOTES:

*ILM background values provided in Baseline Risk Assessment (G&M 1996).

NT = No Toxicity values available for calculation of HBRG NA = Not Available.